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Chapter 1

Production of Mosaic Turnip Crinkle Virus-Like Particles 
Derived by Coinfiltration of Wild-Type and Modified Forms 
of Virus Coat Protein in Plants

Roger Castells-Graells, George P. Lomonossoff, and Keith Saunders

Abstract

When the coat protein reading frame of turnip crinkle virus (TCV) is transiently expressed in leaves, virus- 
like particles (VLPs) are readily formed. However, after introducing genetic modifications to the full- 
length coat protein sequence, such as the introduction of an epitope-specific sequence within the coat 
protein sequence or the in-frame carboxyl terminal fusion of GFP, the formation of such modified VLPs is 
poor. However, by coexpression of one of these modified forms with wild-type TCV coat protein by the 
coinfiltration of appropriate Agrobacterium suspensions, VLP generation is enhanced through the forma-
tion of “mosaics,” that is, individual VLPs consisting of both modified and wild-type subunits (also known 
as phenotypically mixed VLPs). Here we describe methods for the introduction of genetic modifications 
into the TCV coat protein sequence, the production of mosaic TCV VLPs and their characterization.

Key words Turnip crinkle virus, Plant infiltrations, Virus-like particles, Mosaic, Agrobacterium, 
Bionanotechnology, Transient expression, Epitope display

1 Introduction

TCV is composed of 180 copies of a single type of coat protein 
molecule that can adopt one of three possible structural confor-
mations in the mature virus structure. The crystal structures of the 
mature particle [1] and its swollen form [2] have been elucidated. 
During virus assembly pairs of TCV coat protein molecules associ-
ate with each other via the coat protein Projecting (P) and Shell 
(S) domains (see Fig. 1). Coat protein pairs are then assembled 
into mature capsid structures by the interaction of one S domain 
of a coat protein pair with an adjacent S domain of another coat 
protein pair. The S domains of structurally related coat proteins 
are held together by calcium ions and it is the removal of these 
ions that results in the swollen form of the virus structure. In 
addition and as a consequence of capsid formation, each mature 
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virus particle possesses a single pair of coat protein molecules that 
become  permanently fused together [3]. This stable dimer has 
been proposed to play a role in the uncoating of the mature virus 
particle [2].

Virus-like particles (VLPs) composed of turnip crinkle virus 
(TCV) coat protein can be readily generated through 
Agrobacterium-mediated transient expression using pEAQ-HT 
constructs [4, 5] containing the sequence encoding the TCV coat 
protein (TCVCP) [6]. Virus-sized, stable, RNA containing T = 3 
particles result from the expression of full-length TCV coat pro-
tein; smaller, empty RNA-free T = 1 particles can be formed by the 
expression of coat protein which lacks the region that interacts 
with the viral genomic RNA (the random or R domain) [6]. 
Modified TCV VLPs that display either GFP or a hepatitis B virus 
epitope on the particle outer surface via the projecting (P) domain 
can be formed by the expression of modified forms (see Fig. 2) of 
the TCV coat protein. However, the yield of these modified VLPs 
is greatly diminished compared to the yield obtained with unmodi-
fied coat protein [6]. It is likely that the formation of dimers of the 
modified subunits is adversely affected by the additional amino 
acid sequences engineered into the P domain. As a result, subse-
quent VLP formation is not accomplished at the same rate as found 
with wild-type coat protein. A detailed analysis of the properties of 
these peptide-displaying VLPs and their potential use in bionano-
technological applications [7–9] such as vaccines [10] and as can-
cer targeting imaging agents [11] has been hindered as a 
consequence of the low yield. However, we rationalized that by 
performing coinfiltrations with plasmids expressing either wild- 
type or modified coat protein sequences it should be possible to 
enhance the production of peptide-displaying VLPs through the 

Fig. 1 The position of R (random), S (shell), and P (projecting) structural domains 
in an associated pair of coat protein molecules of TCV (adapted from [1])

Roger Castells-Graells et al.



5

creation of mosaic particles. Using the methods described below 
(sucrose gradients and affinity chromatography) we have shown 
that the production of such mosaics, containing at least one modi-
fied subunit, significantly enhances VLP yield and is thus a route to 
the production of TCV VLPs displaying heterologous sequences.

2 Materials

 1. BP and LR clonase enzymes for Gateway cloning (Invitrogen).
 2. HindIII, PvuI restriction enzymes, Phusion polymerase, and 

T4 DNA ligase.
 3. QIAprep spin miniprep kit (Qiagen), QIAquick gel extraction 

kit (Qiagen), MinElute reaction cleanup kit (Qiagen) (see 
Note 1).

 4. Primers KS 35 and KS 36 (see Table 2).

 1. Nicotiana benthamiana plants are grown in glasshouses with 
supplemental lighting for 16 h at a constant temperature of 
24 °C. Infiltrations are performed on plants ranging from 3 to 
4 weeks old (see Note 2).

 2. One Shot ® TOP10 chemically competent E. coli (Invitrogen) 
is used for propagation of recombinant plasmids.

 3. Agrobacterium tumefaciens strain LBA4404 is used for plant- 
based transient expression.

 4. Plasmids for recombination cloning, subcloning, and 
Agrobacterium transformation are described in Table 1.

 5. Bacterial glycerol stock of A. tumefaciens strain LBA4404 con-
taining pBin61-TCV DNA [2, 12].

2.1 Enzymes 
and Cloning Reagents

2.2 Plants, Plasmids, 
and Bacterial Strains

Fig. 2 Schematic representation of the gene constructions in this study. (a) Entry clones showing the positions 
of pertinent restriction sites. (b) Destination clones derived from the entry clones that were subsequently used 
to transform Agrobacterium LBA4404. R = random; S = shell and P = projecting structural domains, 
GFP = green fluorescent protein. Striped box = the location of the inserted hepatitis B epitope MIDIDPYKEFG 
amino acid sequence [6]

Mosaic Virus-Like Particles
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Table 2 
Oligonucleotides for cloning the TCV coat protein gene

Oligonucleotide Sequence

KS 35 5′-GGGGACAAGTTTGTACAAAAAAGCAGG 
CTTAATGGAAAATGATCCTAGAGTC-3′

KS 36 5′-GGGGACCACTTTGTACAAGAAAGCTGG 
GTTTACTAAATTCTGAGTGCTTGC-3′

Table 1 
Plasmids for TCV-like particle cloning and expression

Name Description Resistance

pDONR-207 Empty entry vector 
(Invitrogen)

Gentamycin

pDON-TCVCP Entry vector possessing the 
TCV coat protein

Gentamycin

*pDON-TCVCP-GFP Entry vector of the TCV coat 
protein with the GFP 
sequence cloned at its 
carboxyl terminus

Gentamycin

*pDON-TCVCP-(P)Hep Entry vector of the TCV coat 
protein with the hepatitis B 
amino acid sequence 
MDIDPYKEFG cloned into 
the P domain of the coat 
protein

Gentamycin

pBin61-TCV Infectious clone of the TCV-M 
strain cloned in pBin-61

Kanamycin

pEAQ-HT-DEST1 Empty binary vector Kanamycin

pEAQ-HT-P38 Binary vector for transient TCV 
coat protein expression

Kanamycin

*pEAQ-HT-P38/GFP Binary vector for transient TCV 
coat protein expression with 
a carboxyl terminal GFP

Kanamycin

*pEAQ-HT-P38(P)Hep Binary vector for transient TCV 
coat protein expression with 
an amino acid sequence 
within the P domain specific 
for a monoclonal antibody to 
a hepatitis B virus amino acid 
sequence

Kanamycin

*Plasmids possessing modifications, addition of GFP and the insertion of the hepatitis B 
monoclonal antibody peptide sequence, were constructed during this study

Roger Castells-Graells et al.
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 1. MilliQ water.
 2. 2× YT medium: 16 g/l tryptone, 10 g/l yeast extract, 5 g/l, 

NaCl, pH 7.4.
 3. SOC medium: 20 g/l tryptone, 5.0 g/l yeast extract, 0.58 g/

ml NaCl, 0.19 g/l KCl, 2.03 g/l MgCl2, 2.46 g/l MgSO4 
7H2O, 3.6 g/l glucose, pH 7.5.

 4. LB agar: 10 g/l Bacto tryptone, 10 g/l NaCl, 5 g/l yeast 
extract, pH 7.0, 10 g/l agar. Add antibiotics from stock solu-
tions for a final concentration as indicated: LB + Kan (50 μg/
ml), LB + Gen (7 μg/ml), LB + Kan (50 μg/ml) + Rif (50 μg/
ml).

 5. 7 mg/ml gentamycin sulfate (stock solution) in water, stored 
at −20 °C.

 6. 50 mg/ml kanamycin sulfate (stock solution) in water, stored 
at −20 °C.

 7. 10 mg/ml rifampicin (stock solution) in methanol, stored at 
−20 °C.

 8. EB: 10 mM Tris–HCl, pH 8.5.
 9. MMA: 10 mM 2-(N -morpholino)ethanesulfonic acid (MES), 

pH 5.6, 10 mM MgCl2, 100 μM acetosyringone (3′, 
5′-dimethoxy-4′-hydroxyacetophenone). A 100 mM stock 
solution of acetosyringone is prepared in ethanol and stored at 
−20 °C.

 10. Extraction buffer: 1 mM MgSO4, 1 mM sodium phosphate, 
pH 7.4.

 11. Elution buffer: 200 μM glycine, pH 2.5, adjust pH with HCl.
 12. 1 M Tris, pH 10.4, adjust pH with NaOH.
 13. MOPS buffer: 50 mM MOPS, 50 mM Tris base, 0.1% SDS, 

1 mM EDTA, pH 7.7.
 14. SeeBlue® Plus2 prestained protein marker (Invitrogen).
 15. Instant Blue for staining NuPage gels (Expedeon).
 16. Western blot transfer buffer: 25 mM Tris, 190 mM glycine, 

pH 8.3, 20% methanol.
 17. PBS-T: 80 g NaCl, 2 g KCl, 14.4 g Na2HPO4, 2.4 g KH2PO4, 

pH 7.4 (adjust pH with HCl) in 1 l for a 10× stock solution, 
0.05% (v/v) Tween 20.

 18. 5% (w/v) skim milk powder in PBS-T.
 19. Immobilon western chemiluminescent HRP substrate.
 20. 25% and 70% (w/v) sucrose in 1 mM MgSO4, 1 mM sodium 

phosphate, pH 7.4.
 21. 2% (w/v) uranyl acetate.
 22. NuPAGE LDS sample buffer (Invitrogen).

2.3 Buffers 
and Solutions

Mosaic Virus-Like Particles
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 23. 1× TBE buffer: 10.8 g/l Tris–HCl, 5.5 g/l boric acid, 2 mM 
EDTA.

 24. Agarose.
 25. 100% (w/v) glycerol.
 26. Liquid nitrogen.

 1. Monoclonal primary antibody against the HBcAg protein epi-
tope (ref 10E11, Abcam Ltd.).

 2. Goat anti-mouse secondary antibody conjugated to horserad-
ish peroxidase (ref W4021, Promega).

 3. GFP Tag antibody conjugated to horseradish peroxidase 
(A10260 Invitrogen).

 1. Hypodermic needles.
 2. 1 ml syringes (without needle).
 3. Syringe with a long needle.
 4. Miracloth (Merck Chemicals Ltd.).
 5. Filter paper.
 6. GFP affinity chromatography columns consisting of GFP- 

Nano- Trap A beads (Chromotek).
 7. 4–12% (w/v gradient) NuPAGE gels in NuPAGE® gel system 

(Invitrogen).
 8. Gel transfer apparatus, wet chamber (Mini Trans-Blot®, 

Bio-Rad).
 9. Nitrocellulose membrane (for Western blot analysis).
 10. ImageQuant LAS 500 detection equipment.
 11. Plastic (pyroxylin) and carbon-coated copper grids with one 

side flash coated with palladium (400 mesh, Agar Scientific 
Ltd.).

 12. FEI Tecnai20 TEM microscope.
 13. Eppendorf electroporator 2510.
 14. Spectra-Por Float_A_Lyzer G2 dialysis devices (Spectrum 

Labs).

3 Methods

For all expression studies, PCR-derived TCV cDNA from plasmid 
pBin61-TCV [12] was cloned into the entry vector pDONR-207 
utilizing the Gateway BP recombinational ligation reaction giving 
rise to pDONR-TCVCP (see Note 3). This was subsequently 
transferred, by the Gateway LR reaction, to the pEAQ-HT-DEST1 
expression vector [5] for plant infiltration and expression studies. 

2.4 Antibodies

2.5 Consumable 
Materials and Devices

3.1 Genetic 
Modifications

Roger Castells-Graells et al.
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Thus, TCV VLPs are generated by expression of the full-length 
coat protein open reading frame from the plasmid construct 
pEAQ-HT-P38. Changes to the coat protein, by the fusion of GFP 
to the coat protein carboxyl terminus or the introduction of a 
 specific sequence within the P domain of the coat protein have 
been accomplished with modified forms of pDONR-TCVCP. Here 
DNA corresponding to the necessary sequences was designed and 
synthesized commercially. By utilizing a unique HindIII site within 
the TCV coat protein sequence and a PvuI recognition sequence 
flanking the coat protein sequence in the plasmid backbone, the 
synthetic DNA can then be ligated into pDONR-TCVCP. Modified 
forms of the TCV sequence in pDONR-TCVCP are subsequently 
transferred into pEAQ-HT-DEST1 for expression (see Fig. 2).

 1. Prepare plasmid pBin61-TCV DNA [2] from a −80 °C bacte-
rial glycerol stock by inoculation of 3 ml of 2× YT medium 
supplemented with 50 μg/ml kanamycin. Grow at 37 °C over-
night with constant agitation. Isolate plasmid DNA (Qiagen 
kit).

 2. Set up PCR with pBin61-TCV as the DNA template, and 
appropriate primer pairs (KS 35 and KS 36, see Table 2, with 
reactions of 98 °C, 2 min and for 30 cycles of 98 °C for 10 s, 
then 65 °C for 20 s, and 72 °C for 45 s). The primer pairs are 
complementary to the TCV coat protein nucleotide sequence 
and incorporate sequences necessary for subsequent Gateway 
cloning (see Table 2). Perform PCR with Phusion polymerase.

 3. Verify DNA synthesis by agarose gel electrophoresis under 
standard conditions on a 1.1% (w/v) agarose gel in 1× TBE 
buffer and recover PCR product of 1050 bp by Qiagen QIA 
quick gel extraction kit according to the manufacturer’s 
instructions, eluting the DNA into EB buffer.

 4. Perform the Gateway clonase BP reaction (follow manufac-
turer’s instructions) with the PCR derived DNA and the entry 
vector pDONR-207. After transformation of TOP10 E. coli, 
(follow manufacturer’s instructions) select for transformed E. 
coli on LB agar plates supplemented with gentamycin. Verify 
clones by DNA sequencing and set up the Gateway clonase LR 
reaction (follow manufacturer’s instructions) with the destina-
tion vector pEAQ-HT-DEST1. Again after transformation of 
TOP10 E. coli, isolate positive transformed E. coli on LB agar 
supplemented with kanamycin. Verify positive clones by DNA 
sequencing.

 1. Design the TCV coat protein sequence to possess the GFP or 
other desired nucleotide sequence fused in frame to the car-
boxyl terminus by consulting and downloading (online) the 
appropriate sequence file from GenBank (accession code for 

3.1.1 Cloning TCV Coat 
Protein Reading Frame 
Sequence into pDONR-207

3.1.2 Modifications 
to the TCV Sequence 
in pDONR-TCVCP

Mosaic Virus-Like Particles
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TCV: HQ589261). Assemble, in silico, such sequences to 
achieve the desired amino acid sequence in the expressed gene 
construct, see Fig. 2 for the location of the unique restriction 
sites, HindIII and PvuI employed in this cloning procedure. 
Subsequently order designed synthetic sequences from a com-
mercial synthesizer company. Similarly design the required 
nucleotide sequence that encodes the hepatitis B epitope 
sequence (MIDIDPYKEFG), or any other amino acid 
sequence, so that it can be inserted into the TCV coat protein 
P domain [6]. For both synthetic sequences, the 5′ terminal 
sequence and the 3′ terminal sequence will be the unique 
HindIII recognition sequence located within the TCV coat 
protein S domain and the unique PvuI recognition sequence in 
the plasmid backbone respectively, Fig. 2.

 2. Perform standard restriction digestions of the plasmid that 
contains the synthetic DNA sequence and pDONR-TCVCP 
with HindIII and PvuI. Recover and purify the necessary 
DNAs after agarose gel electrophoresis by the Qiagen QIA 
quick gel extraction kit.

 3. Set up ligation reactions with these DNAs with T4 DNA ligase. 
Transform TOP10 E. coli, recover and verify positive clones as 
before. The insert of the resulting plasmids can then be trans-
ferred into pEAQ-HT-Dest1 by the Gateway LR clonase 
reaction.

Agrobacterium tumefaciens is first transformed individually with 
the selected pEAQ-HT-DEST1 plasmids containing the desired 
nucleotide sequences, and cultures are then prepared and infil-
trated into plant leaves for protein expression. Mosaic VLP genera-
tion is achieved following the coinfiltration of wild-type and the 
modified TCV coat protein gene constructions. By adjusting the 
ratio of the wild-type to the modified TCV coat protein construct 
in the infiltration solution, the ratio of the two forms of the protein 
in the mosaic VLPs can be controlled (see Fig. 4).

 1. Store stock cultures of exponentially grown untransformed 
Agrobacterium in 25% (v/v) glycerol at −80 °C. Briefly, 
Agrobacteria cultures are collected at log phase by gentle cen-
trifugation, washed three times, and resuspended with 100-
fold concentration in 25% (v/v) glycerol. Cultures are snap 
frozen in liquid nitrogen prior to storage at −80 °C.

 2. Transformation of Agrobacterium with pEAQ-based expres-
sion plasmids is achieved by electroporation [13]. Approximately 
50 ng of plasmid DNA is sufficient for electroporation of 40 μl 
of cells at 2.5 kV. Check that a time constant between 5.8 and 
6.5 μs was achieved before proceeding with the next step. If 
not, repeat with a fresh batch of electro competent cells. After 
adding 0.8 ml of SOC and incubating at 28 °C for 1 h with 

3.2 Transient Plant 
Expression

Roger Castells-Graells et al.
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shaking at 200 rpm, 10% (v/v) of the transformation mixture 
is spread onto LB agar containing kanamycin and rifampicin. 
Incubate plates at 28 °C.

 3. Prepare 2× YT liquid medium with appropriate antibiotics for 
the Agrobacterium strain (rifampicin 50 μg/ml for LBA4404) 
and expression plasmid (kanamycin 50 μg/ml for pEAQ-based 
plasmids; see Note 4), to grow Agrobacteria for preparation of 
an adequate infiltration solution (see Note 2).

 4. Inoculate 2× YT liquid culture, 5 ml, by picking a single col-
ony from a plate. Grow at 28 °C in a shaking incubator until 
the OD at 600 nm is ≥2.

 5. Centrifuge the cultures at 4000 × g for 10 min at room tem-
perature to pellet the cells and discard the supernatant.

 6. Resuspend the cells gently in the required volume of MMA (see 
Note 2) to make a solution of final OD (600 nm) = 0.4. For 
coexpression of two gene constructs, prepare solutions of indi-
vidual OD (600 nm) = 0.8 which, when mixed 1:1, will result 
in a final OD (600 nm) = 0.4 for each gene construct. Ratios 
of 3:1 and 9:1 of wild-type TCV coat protein to modified TCV 
coat protein are similarly obtained by appropriate dilution of 
the relevant cultures (see Note 5).

 7. Leave the infiltration solution at room temperature for 0.5–3 h 
to allow the bacterial culture to adapt to the buffer conditions.

 8. Gently scratch the leaf surface with a hypodermic needle. 
Syringe the infiltration solution, at the damaged point on the 
leaf, into the leaf ensuring that the entire leaf takes up the infil-
tration solution (see Note 6).

 9. Harvesting is typically done between 5 and 9 days post 
infiltration.

 1. Harvest infiltrated leaves, weigh and homogenize the leaf tis-
sue with three volumes (e.g., for 1 g tissue, use 3 ml) of extrac-
tion buffer (see Note 7) using a blender in the cold room, at 
4 °C.

 2. Squeeze the homogenate through two layers of Miracloth and 
centrifuge at 13,000 × g for 20 min at 4 °C to remove cell 
debris.

 3. To prepare the double sucrose cushion, pour the plant clarified 
extract into a suitable ultracentrifuge tube, then add 2 ml of 
25% (w/v) sucrose solution underneath the extract by using a 
syringe with a long needle passing through the supernatant 
layer. Next add 250 μl of the 70% (w/v) sucrose underneath 
the previous sucrose solution by similar means. Balance the 
tubes and centrifuge at 274,000 × g for 2.5 h at 4 °C. Depending 
on the volume of the supernatant, use either a TH641 or 
Surespin rotor (or similar) [14].

3.3 Extraction 
and Purification

Mosaic Virus-Like Particles
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 4. After centrifugation, puncture the bottom of the tube with a 
needle (see Note 8). Recover the first 500 μl, i.e., bottom frac-
tion (B) of the tube. Discard the next 1.5 ml and collect the next 
500 μl, the middle fraction (M). Collect the supernatant fraction 
(S; 500 μl) directly from the top of the tube with a pipette.

 5. Store samples at 4 °C for gel electrophoresis and western blot 
analysis (see Subheading 3.5).

 6. For GFP affinity chromatography, ultracentrifugation fractions 
are dialyzed against extraction buffer overnight at 4 °C using a 
dialysis membrane with a molecular weight cutoff of 100 kDa. 
Dialyzed fractions are stored at 4 °C.

To confirm the formation of mosaic VLPs formed of both wild- 
type and GFP-displaying subunits and to separate these from VLPs 
containing just wild-type coat protein, GFP affinity chromatogra-
phy can be performed. For mosaics displaying other sequences, 
alternative methods specific for the inserted sequence will be 
required.

 1. Equilibrate beads according to manufacturer’s instructions 
(commercial product protocol). This is to ensure that the 
 preservative in the solution in which the beads are dispatched 
to the customer is removed.

 2. Add the dialyzed VLPs fraction (0.5–1 ml) to the equilibrated 
Nano-Trap®_A beads. Mix by repetitive inverting for 1 h at 
4 °C on a rotating wheel.

 3. Remove the bottom cap from the spin column and place it in 
a new 2 ml tube. Centrifuge at 100 × g for 10 s. Retain this 
fraction for subsequent gel analysis.

 4. Wash the beads by resuspending them in 500 μl ice-cold dilu-
tion buffer. Place the spin column in a new 2 ml tube and cen-
trifuge at 100 × g for 10 s. Collect the flow-through for 
immunoblot analysis and wash two more times. These  fractions 
will consist of VLPs entirely formed of wild-type coat protein. 
Close the column with the bottom plug.

 5. Add 100 μl of elution buffer to the nano-Trap® A beads. 
Pipette the beads up and down for 30 s. Remove the bottom 
plug of the spin column and place it in a new 2 ml tube con-
taining 10 μl 1 M Tris pH 8.5 to neutralize the eluate. This 
fraction will contain mosaic VLPs (see Note 9).

 6. Store samples at 4 °C for gel electrophoresis and western blot 
analysis (see Subheading 3.5).

Protein extracts, ultracentrifugation fractions, washed and eluted 
chromatography fractions are analyzed by electrophoresis in 4–12% 
(w/v gradient) NuPAGE Bis-Tris gels resolved with MOPS buffer. 
In order to visualize the protein bands the gels are stained with 

3.4 Characterization 
and Purification 
of Mosaic VLPs 
by Affinity 
Chromatography

3.5 Gel 
Electrophoresis 
and Western Blot 
Analysis

Roger Castells-Graells et al.
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Instant Blue. TCV coat protein is resolved as a protein band at an 
apparent molecular weight of 38 kDa. Similarly, TCV coat protein 
fusion products are resolved at approximately 40 kDa for coat pro-
tein/Hep and at 65 kDa for coat protein/GFP respectively.

 1. Set up 4–12% (w/v gradient) NuPAGE Bis-Tris gel according 
to manufacturer’s instructions. Add 5 μl of SeeBlue protein 
marker in the first lane of the gel.

 2. Gel samples, derived from the affinity chromatography proce-
dure, are denatured by boiling for 5 min after the addition of 
4× NuPAGE LDS sample buffer. Load the samples (up to 
20 μl) in the remaining lanes and run the gel with MOPS buf-
fer at 200 V for about 50 min.

 3. Place the gel in Instant Blue staining solution for 1–4 h (see 
Figs. 3a and 4a). Destaining is not necessary.

For the western blot analysis repeat steps 1 and 2.

 1. After electrophoresis, transfer the proteins from the gel to the 
nitrocellulose membrane in a gel transfer apparatus set at 
100 V for 1 h using the western blot wet chamber transfer 
system.

 2. Block the membrane overnight with 5% (w/v) milk in PBS-T 
with constant agitation in a cold room.

3.5.1 Instant Blue 
Staining

3.5.2 Western Blot 
Analysis

Fig. 3 NuPAGE gel separation and western blot detection of ultracentrifugation 
separated wild-type coat protein and wild-type/Hep fused coat proteins in 
mosaic VLPs. (a) Instant Blue staining; coat protein (molecular weight 38 kDa) 
arrowed. (b) Western blot detection of coat protein/Hep fusion product (40 kDa) 
arrowed. S = supernatant; M = middle and B = bottom fractions

Mosaic Virus-Like Particles
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 3. Incubate with antibody solutions diluted 1:10,000 in PBS-T 
is for 1 h at room temperature. Remove unbound antibody 
by washing three times in PBS-T for 20 min at room 
temperature.
(a) To detect the hepatitis B-specific amino acid sequence, the 

membrane is incubated with a monoclonal primary anti-
body against the HBcAg protein epitope followed by its 
detection with a goat anti-mouse secondary antibody con-
jugated to HRP (see Fig. 3b).

(b) GFP is detected by the use of an anti GFP-HRP conjugate 
antibody (see Fig. 4b).

 4. HRP is detected with the chemiluminescent substrate ECL 
plus following 2 min incubation. Protein bands are subse-
quently visualized in an ImageQuant LAS 500 detection 
equipment (see Note 10).

Transmission electron microscopy can be used as a tool to confirm 
the assembly of virus-like particles and to study their shape and size 
(see Fig. 5).

3.6 Negative-Stained 
Transmission Electron 
Microscopy

Fig. 4 NuPAGE gel separation and western blot detection of wild-type coat protein and wild-type/GFP fused 
coat proteins in mosaic VLPs. (a) Proteins revealed following NuPAGE gel electrophoresis subsequently stained 
with Instant Blue. Wild-type coat protein (38 kDa, arrowed) is only present in the elution fractions of the mosaic 
VLPs (lanes 2–4) and in plant leaf extracts (lanes 5–8) (see Note 9). (b) Western blot detection of GFP follow-
ing NuPAGE gel electrophoresis. The presence of coat protein fused with GFP (65 kDa, arrowed) in the elution 
fractions of the mosaic VLPs (lanes 2–4) and in plant leaf extracts (lanes 6–8). Samples in lanes 1 and 5 are 
derived from infiltrations with pEAQ-HT-P38. Samples in lanes 2 and 6 are from infiltrations with a 1:1 (v:v) 
mixture of pEAQ-HT-P38 and pEAQ-HT/GFP. Samples in lanes 3 and 7 are from infiltrations with a 3:1 (v:v) 
mixture of pEAQ-HT-P38/GFP and pEAQ-HT-P38. Samples in lanes 4 and 8 are from infiltrations with a 9:1 
(v:v) mixture of pEAQ-HT-P38/GFP and pEAQ-HT-P38 (see Note 10)

Roger Castells-Graells et al.
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 1. Place 5–10 μl of VLP preparation onto carbon-coated copper–
palladium grids (400 mesh) and allow the particles to settle 
(20 s) before blotting dry with filter paper.

 2. Wash the grids with five drops of MilliQ water and blot dry.
 3. Negative stain the VLPs with 2% (w/v) uranyl acetate solution 

for 15 s then dry the grid through by blotting its edge with 
filter paper.

 4. View grids in a transmission electron microscope such as the 
FEI Tecnai20 TEM microscope and obtain pictures with a 
bottom- mounted digital camera.

4 Notes

 1. Other commercial kits for plasmid preparation, gel extraction, 
and enzymatic reaction cleanup can also be used.

 2. The volume of the culture depends on the scale of your experi-
ment. Generally, 5 ml of infiltration solution is enough to infil-
trate three leaves of one N. benthamiana plant (approximately 
10 g of fresh-weight tissue). If possible, prepare infiltration 
solution in excess to avoid being short of it during the infiltra-
tion process in the glasshouse. Typically, inoculate the culture 
in the afternoon and grow overnight. Resuspending the 
 infiltration solution to an OD 600 of 0.4 usually requires 4–5 
volumes of MMA to that of the starting culture.

 3. For convenience, the plant expression vector pEAQ-HT- 
Dest1, a Gateway compatible vector was used throughout the 
current study. Restriction enzyme cloning of the TCV coat 
protein nucleotide sequence directly into the AgeI and XhoI 

Fig. 5 TEM image of uranyl acetate stained TCV VLPs, bar = 40 nm

Mosaic Virus-Like Particles
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restriction sites of pEAQ-HT [6] would have resulted in simi-
lar expression vectors.

 4. Although each culture tends to grow at a different rate, allow-
ing cultures to grow to stationary phase generally ensures that 
all cultures have similar densities. Other highly efficient 
Agrobacterium strains such as AGL1 may also be used, 
although the commonly used GV3101 (or related “nopaline” 
strains) are not recommended due to low-level transient 
expression.

 5. The highest amount of fused coat protein/GFP hybrid pro-
tein was evident in preparations isolated from leaves that had 
been infiltrated with equal volumes of pEAQ-HT-P38 and 
pEAQ-HT-P38/GFP. The pH is neutralized to preserve the 
VLP structure.

 6. The expression level is generally higher before the plant starts 
flowering. Plants that are 3 weeks post potting-on from the 
seedling stage are ideal. For small-scale experiments (useful for 
checking clones) smaller plants may be used for syringe infil-
tration of small leaf patches that can be extracted on a small 
scale using a bead beater or bead mill. To infiltrate leaves, nick 
the leaf surface with a sterile needle. Aspirate infiltration solu-
tion into a sterile 1 ml plastic syringe (take care to avoid bub-
bles), place the syringe over the leaf wound while keeping a 
finger behind the leaf for support. Gently press the solution 
into the intercellular space.

 7. It is important not to employ buffers that contain EDTA 
thereby avoiding the loss of calcium from the VLPs that would 
result in the loss of viral structures.

 8. The major concentration of VLPs is found in the interface 
between the 70% and 25% (w/v) sucrose solutions. Therefore, it 
is recommendable to take the first 0.5 ml from the bottom when 
using 13 ml ultracentrifuge tubes. In the middle and supernatant 
fractions, the presence of VLPs is low or undetectable.

 9. TCV coat protein does not bind to GFP affinity beads. 
However TCV coat protein that has been formed into mosaic 
VLPs with TCV coat protein/GFP will be eluted from GFP 
affinity beads due to the interaction between TCV coat pro-
tein fused to GFP and the beads. Therefore in lane 1 Fig. 4a, 
there is no TCV coat protein observed because these VLPs are 
entirely formed of wild-type coat protein.

 10. We have demonstrated the formation of mosaic VLPs through 
the coexpression of both wild-type and modified coat pro-
teins. This approach has clear benefits, compared to infiltra-
tions with just the modified coat protein [6]. The formation of 
mosaic VLPs by other plant and animal viruses, whose capsid 
is formed of repeated single coat protein molecules, like TCV, 
is worthy of investigation.

Roger Castells-Graells et al.
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