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The Impact of Transposable Elements
in the Evolution of Plant Genomes: From
Selfish Elements to Key Players
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Abstract Transposable elements (TEs) are major components of all eukaryote
genomes, and in particular of plant genomes. Whereas these elements have long
been considered as selfish ‘junk DNA without function’, the data accumulated over
the years have shown that they are essential components of the genome structure
and key players of genome evolution. Here, we summarize the recent advancement
in the field and we discuss the role of TEs in the light of the new data coming from
whole plant genome sequences and next-generation sequencing (NGS) data on
resequencing of plant varieties and lines.

6.1 Transposable Elements, a Major Component
of Plant Genome

Transposable elements (TEs) are mobile genetic elements that account for an
important fraction of virtually all eukaryote genomes. TEs can be classified into two
major classes, class I (retrotransposons) and class II (DNA transposons). Class I
elements transpose through an RNA intermediate used as a template in a reverse
transcription reaction leading to a new DNA copy that can integrate back into the
genome. Therefore, class I TEs do not excise during transposition and their copy
number increases as a result of their movement. Whereas the transcription of the
element is catalysed by the host’s polymerase (Pol II), its reverse transcription and
integration are catalysed by enzymatic activities encoded by the retrotransposon
itself, in case of autonomous elements, or by a related element, in case of
non-autonomous elements. Class II elements transpose via a DNA intermediate,
which results from the excision of the element from its chromosomal location and
that can be integrated elsewhere into the genome. Both the excision and integration
reactions are catalysed by a transposase which is encoded by the mobilized TE in
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case of autonomous elements or by a related element in case of a defective TE copy.
There are, however, some DNA transposons that move through a different mech-
anism. This is the case of Helitrons, which transpose via a rolling-circle mechanism
similar to that of some bacterial TEs. Both class I and class II TEs can be further
classified into families and subfamilies depending on their structure, encoded
proteins and mechanism of transposition (Wicker et al. 2007).

Whereas TEs are commonplace in eukaryotes, and most eukaryotes contain
elements belonging to all major types and classes, their prevalence differs from
genome to genome. TEs account for a major but variable fraction of plant genomes
(Bennetzen and Wang 2014), with LTR retrotransposons and miniature
inverted-repeat transposable elements (MITEs) tending to be the most represented
types of TEs (Casacuberta and Santiago 2003). The variability in TE content is
huge in plants. For instance, as much as 85 % of maize genome or 70 % of Norway
spruce genome (Nystedt et al. 2013) has been annotated as transposons, whereas
transposon annotations make only the 21 % of the more compact Arabidopsis
thaliana genome (Ahmed et al. 2011). These numbers are not directly comparable
as the methods and the parameters used to perform the annotations are different, and
this may have an important impact on the sensibility and specificity of the detection.
Indeed, analyses in A. thaliana have shown that there is a continuum between
repetitive elements and unannotated genomic dark matter, making it somehow
arbitrary to define a frontier (Maumus and Quesneville 2014). However, in spite of
these limitations, there seem to be a direct relationship between genome size and
percentage of TEs within the genome. Analyses of closely related species, for
example of the Oryza genus (Chénais et al. 2012), suggest that TE activity and
polyploidization are the two main mechanisms responsible for genome size increase
during evolution (Panaud et al. 2014). The relationship between genome duplica-
tion and transposition is interesting. On the one hand, gene duplication can allow
genomes to tolerate a higher TE activity, as their mutagenic capacity is buffered by
having extra copies of essential genes, but on the other hand, the lack of gene
duplications may force the genome to explore other sources of innovations such as
transposition. In this respect, it is interesting to note that gymnosperms, that in
contrast to angiosperms do not seem to have suffered recent whole-genome
duplications, present extremely big genomes with a very high content of TEs (De
La Torre et al. 2014).

The effect of TE activity in genome size may be quite dramatic over short
periods of time, as suggested by the high activity of TEs associated to the genome
size doubling of Oryza australiensis, a wild relative of rice, during the last three
million years (Zhao and Ma 2013). However, although TEs may be responsible for
rapid genome size changes, their activity is not constant during evolution. Indeed,
TEs seem to alternate periods where they are relatively quiescent with burst of
transposition where their copy number increases significantly (Vitte et al. 2014).
This evolutionary behaviour of transposons as a whole can be in part explained by
the results obtained analysing the regulation of particular transposons and genomes.
All the data accumulated so far indicate that transposons are heavily silenced in
genomes by different mechanisms, and in particular by epigenetic mechanisms
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(Ito and Kakutani 2014). Silent TEs of different classes, including both DNA
transposons and retrotransposons, can be reactivated in mutated genetic back-
grounds showing reduced DNA methylation (Ito and Kakutani 2014), which shows
that the silenced TEs retain their capacity to be activated. In fact, TEs can be
activated in wild-type plants in particular situations or developmental stages. TEs
are de-repressed in the gametophytes and their expression may allow the production
of sRNAs to ensure the maintenance of the epigenetic silencing of TEs in the
following generation, although alternative explanations of this phenomenon are also
possible (Martínez and Slotkin 2012). In addition, over the years, data have
accumulated on the stress-related activation of different TEs. This includes the
well-studied activation of the tobacco retrotransposon Tnt1 by biotic and abiotic
stresses (Grandbastien et al. 2005), the cold and salt activation of the rice MITE
mPing (Naito et al. 2009) and the heat activation of the Arabidopsis ONSEN
retrotransposons (Cavrak et al. 2014). Similarly, it is known that in vitro culture,
which can be considered as a complex stress, can reactivate TEs in rice and maize
(Hirochika 1997; Kaeppler et al. 2000). Plants are subjected to stress in nature, and
this may lead to reactivation of TEs in certain cells. In most cases, the somatic
activation of TEs will not lead to germinal transpositions and therefore will not be
inherited by the successive generations. However, in particular situations, a general
release of the control mechanism may lead to a general activation of TEs leading to
a burst of transposition. It is interesting to note that it has been shown that inter-
specific crosses or polyploidization events may lead to global epigenetic changes
and activation of TEs (Parisod et al. 2009; Yaakov and Kashkush 2011). As these
phenomena are commonplace in plant evolution, this may give the opportunity to
TE amplification bursts to occur and accompany speciation events.

6.2 Transposable Elements in Genome Structure

TEs are usually not homogeneously distributed along chromosomes. They con-
centrate in pericentromeric regions, while they are less abundant in chromosome
arms, in a pattern that is usually complementary to that of genes. These pattern of
TEs can be the consequence of both a preferential insertion into these regions, as
demonstrated for yeast retroelements, or the effect of selection cleaning up the more
frequently deleterious TE insertions in gene-rich regions (Neumann et al. 2011;
Peterson-Burch et al. 2004). Selection against insertion within genes, which are not
homogeneously distributed along chromosomes, and the recombination rate, which
is also different in different chromosomal regions and greatly influences TE elim-
ination, explains in part the distribution of TEs (Bennetzen and Wang 2014).
However, it has been shown that some TEs indeed have a preferential insertion into
certain genomic regions. In general, Copia-like TEs show some preference for
gene-rich regions, whereas Gypsy-like TEs are supposed to target preferentially the
heterochromatic pericentromeric regions (Peterson-Burch et al. 2004). As an
example, the tobacco Tnt1 and the rice Tos17 Copia elements preferentially insert

6 The Impact of Transposable Elements in the Evolution … 95



into gene-rich regions (Miyao et al. 2003; Le et al. 2007), whereas in cereals, there
are some families of Gypsy retrotransposons that are almost exclusively located in
the centromeres, suggesting a high preference for insertion into these regions (Gao
et al. 2009; Wolfgruber et al. 2009; Langdon et al. 2000; Li et al. 2013; Jiang et al.
2003). However, there are exceptions to this rule, and some Gypsy elements such as
the low-copy-number LORE1 retrotransposon from Lotus japonicus seem to target
gene-rich regions (Madsen et al. 2005) and some Copia-like retrotransposons such
as the Tal1 element from Arabidopsis lyrata target the centromere for integration
(Tsukahara et al. 2012).

The fact that TEs, and in particular high-copy-number retrotransposons, tend to
concentrate in gene-poor heterochromatic regions, does not imply that they do not
impact on genome function. Indeed, TE insertions in the pericentromeric regions
probably have a profound impact on the structure and dynamics of genomes. The
main mechanism to control the activity of TEs is their epigenetic silencing. As a
consequence of their silencing, TE sequences tend to be heavily methylated and are
associated with expression-repressive histone modifications (Ito and Kakutani
2014). Therefore, the concentration of TEs in the centromere also concentrates
certain epigenetic marks in these regions, leading to a particular chromatin structure
that is essential for heterochromatin compaction and function in the centromeres
(Wong and Choo 2004). It has been proposed that TEs, and in particular LTR
retrotransposons sitting in the centromere, may transcribe flanking repeats and other
centromeric sequences leading to the production of double-stranded RNA which
would direct their particular heterochromatic structure (Lippman et al. 2004). In
fact, studies on the formation of neocentromeres have shown that it is the epigenetic
nature of centromere elements, and not their sequence, which ensures its func-
tionality (Zhang et al. 2013). Therefore, there is probably a dynamic interplay
between retrotransposons and heterochromatin where some TEs target hetero-
chromatin for integration (in the case of Gypsy-like elements through the chrom-
odomains of their integrases that are known to interact with some heterochromatic
epigenetic marks) and help thereafter to maintain heterochromatin by directing their
epigenetic modification (Gao et al. 2008).

6.3 Transposable Elements as a Source of New Functions

TEs impact on genome and gene evolution in many ways. Perhaps, the most
obvious is the generation of null mutations by transposing into a gene. Some of
these null mutations have been selected by humans during plant domestication such
as the waxy and sticky varieties of foxtail millet (Setaria italica), or Mendel’s
wrinkled peas (Lisch 2013). For TEs that transpose by a cut-and-paste mechanism
(e.g. most class II TEs), the excision of the element may result in function recovery
giving rise to mosaic phenotypes as exemplified by the kernel colour of maize cobs.
Nevertheless, in some cases the excision may leave behind parts of the element that
are not removed and can modify the coding capacity of the gene, and in some cases
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provide new gene functions (Lisch 2013; Oliver et al. 2013). This process by which
a TE, or a part of it, is established in a specific region and gains a cellular function is
known as molecular domestication (Kajihara et al. 2012).

There is an important number of plant genes with a transposon origin (Oliver
et al. 2013; Bennetzen and Wang 2014). In particular, several important tran-
scription factors derive from class II transposases. For example, Daysleeper, a
transcription factor that regulates the morphogenetic development in A. thaliana, is
derived from a hAT transposase (Bundock and Hooykaas 2005), or the light
response FHY3 and FAR1 transcription factors that are ancient Mutator trans-
posases (Hudson et al. 2003; Lin et al. 2007).

Transposons can also capture, duplicate and mobilize genes or gene fragments,
creating new opportunities for gene evolution. Retrotransposons duplicate host
genes or gene fragments through the reverse transcription of their mRNAs gener-
ating what is called a retrogene. The retroposed gene fragments can be fused to host
genes to generate new chimeric proteins (Elrouby and Bureau 2010), and retro-
posed retrogenes can be regulated differently to the original genes (Abdelsamad and
Pecinka 2014), which can be a source of gene innovation. Class II transposons can
also transduplicate genes. Pack-MULEs, for example, are Mutator-like TEs that
carry fragments of genes in different plants and were proposed as important
mediators of gene evolution in plants (Jiang et al. 2004). The fact that an important
fraction of rice Pack-MULEs is transcribed and show signs of purifying selection
suggested that indeed these elements have a role in gene evolution in plants
(Hanada et al. 2009). A part from MULEs, other class II TEs, such as CACTA
elements, have been shown to transduplicate host gene fragments in different plants
(Benjak et al. 2008; Morgante 2006). But probably the TEs that seem to capture
more actively, amplify and mobilize gene fragments are the rolling-circle trans-
posing elements Helitrons. More than one-third of the thousands Helitrons of maize
genome carry at least one host gene fragment (Du et al. 2009). Therefore, TEs have
a great potential to generate new gene structures by shuffling host genome
sequences (Bennetzen 2005; Morgante 2006).

6.4 Impact of Transposable Elements in Gene Regulation

In addition to their effect on the coding capacity of the host genome, TEs can
impact on host genes in many ways. As already explained, the expression of TEs is
tightly regulated, both because they are the main target of the silencing machinery
and also because they usually have stress-related promoters that are only active
under particular situations. For this reason, in addition to being able to modify host
gene expression by interrupting gene regulatory regions upon insertion, for example
in the case of the Vgt1 regulatory locus of maize (Salvi et al. 2007), TEs can modify
the expression of host genes located nearby by contributing their own regulatory
elements or by attracting the silencing machinery.
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There are several examples of insertions of TEs that induce new transcriptional
regulations to host genes. This is the case of the insertion of a Hopscotch TE some
50 Kb upstream of the theosinte branched 1 (tb1) gene, which represses branching
in maize, which results in its overexpression and the apical dominant phenotype of
modern maize (Studer et al. 2011) or the insertion of an LTR retrotransposon
upstream of the Ruby gene in oranges which confers to this gene a developmental
regulation and cold inducibility resulting in the blood orange phenotype (Butelli
et al. 2012).

MITEs are a particular type of transposons present in high copy numbers in plant
genomes (Casacuberta and Santiago 2003). They are relatively small, which may
help them avoiding to generate complete knockout phenotypes, and although they
do not need to be expressed to transpose, they can contain transcriptional regulatory
sequences. For example the rice mPing MITE contains stress-responsible tran-
scriptional regulatory elements that upregulate neighbouring genes under cold and
salt stress conditions (Yasuda et al. 2013; Naito et al. 2009). The high copy number
of MITEs makes them particularly suited to modify the expression of groups of
genes, making it possible to create, or to extend, transcriptional regulatory net-
works. The fact that some transcription factors derive from transposases (see
above), and that the sequences bound by transposases (e.g. the TIRs) can be
mobilized throughout the genome, was proposed as a potential mechanisms to
create and modify transcriptional regulatory networks (Feschotte 2008). In the
recent years, evidences that TEs can mobilize transcription factor binding sites and
rewire transcriptional networks have accumulated (Rebollo et al. 2012). In plants, a
recent report from our laboratory has shown that different families of MITEs have
amplified and redistributed the binding sites for the E2F transcription factor during
Brassica evolution, and the insertion of some of these MITEs may have wired new
genes into the E2F transcriptional network (Hénaff et al. 2014).

In spite of the examples explained above that illustrate the potential of TEs to
bring new regulatory sequences to host genes, the most frequent effect of a TE
insertion within or close a gene promoter is its inactivation. As already explained,
TEs are controlled by epigenetic mechanisms that silence them tightly. For this
reason, most TEs are heavily methylated and are associated to inactive chromatin,
and this can influence genes located nearby that can become silenced by the
presence of the TE. A well-studied example of such an effect is the epigenetic
silencing of a sex determination gene in melon linked to a TE insertion in its
upstream region (Martin et al. 2009). Similarly, the necessary repression of the
flowering regulator FWA gene in A. thaliana is a consequence of the epigenetic
silencing of a SINE transposon located in its promoter (Kinoshita et al. 2007).
Genome-wide analyses suggest that these effects may be highly relevant. As an
example, it has been shown that about 300 genes differentially expressed in maize
populations have changes in DNA methylation, and many of these regions are
associated with transposons (Eichten et al. 2013). This suggests that polymorphic
TE insertions modify the pattern of genome methylation which translates into
changes in gene expression.
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Silencing of TEs is mediated by siRNAs that target TE sequences which
probably originate from the expression of particular TE structures (e.g. inverse
repeated elements). Whereas the main target of these siRNAs are TEs, in some
cases TEs may produce siRNAs that target host genes (Bennetzen and Wang 2014;
McCue and Slotkin 2012). In fact, it has been proposed that TE can be the source of
both siRNAs and miRNAs (Li et al. 2011; Piriyapongsa and Jordan 2008) which
suggests that the genome has evolved a new layer of gene regulation from its
defence mechanisms against TEs.

The expression of TEs may also interfere with host genes creating sense or
antisense transcripts that may result in their specific silencing. It has been shown
that read-through transcription, due to a leaky transcriptional terminator, is rela-
tively frequent in plant retrotransposons, and this could result in the inclusion of
flanking sequences into retrotransposon transcripts. As a consequence, as it has
been shown in tobacco (Hernández-Pinzón et al. 2009), the convergent transcription
of a retrotransposon located downstream of a host gene could result in the formation
of dsRNAs which may potentially regulate the host gene. In addition, TEs inser-
tions in 5’ leader region, 3’ trailer sequence or introns can modify the sites of RNA
processing or polyadenylation affecting gene expression (Bennetzen and Wang
2014).

6.5 Transposable Elements Dynamics
and Evolution of Crop Plants

We have seen in the previous sections that TEs can impact on genomes in many
ways, from providing new genes or modifying the existing ones or alter their
expression, to modify genome or chromosome structure. Because of that TEs are an
extraordinary source of novelty useful for evolution (Lisch 2013). In particular, in
the last few years, a number of examples of TE insertions leading to important
agronomic traits that have been selected during evolution and breeding have
accumulated (Lisch 2013). These include the different flesh fruit colour in blood
orange (Butelli et al. 2012), the different skin colours in grapevine (This et al.
2007), the nectarine phenotype in peaches (Vendramin et al. 2014) or the seedless
phenotype in apples (Yao et al. 2001) (see Fig. 6.1). However, evaluating the
impact of TEs in the evolution of eukaryote genomes is not an easy task. In spite of
the examples listed above on TEs that gave rise to mutations that have been selected
during evolution, a general evaluation is still lacking. There are several reasons for
that, as previously pointed out (Vitte et al. 2014). Although the number of plant
genomes sequenced is growing rapidly, the quality of the published genomes is not
always good enough to allow a proper analysis of the TE content. Indeed, most
published genomes contain a variable, and usually important, fraction of unas-
sembled reads which are usually enriched in repetitive sequences including TEs.
This precludes a complete genome-wide TE analysis. In addition to the quality of
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the sequence and assembly, the annotation of the TE content is also highly variable
among the sequenced genomes. There are several reasons for that, including the use
of different bioinformatics tools and pipelines as well as the thresholds set which
determine the sensitivity and specificity of the annotation tools. This makes com-
parisons of the TE content between genomes a very difficult exercise, and different
voices claim that there is a need for an international effort to standardize the
methods used for annotating TEs (Hoen, Bureau, Bourke and Blanchette, in

Fig. 6.1 Representation of different important agronomic traits that are due to transposable
element insertions. Grey boxes represent exons, blue boxes represent TE coding region, and green
triangles represent LTRs
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preparation). But even with good genome sequences and TE annotation, reference
genomes are only a snapshot, a fixed image, of a genome and analysing the impact
of TEs in genome evolution will require sequence variability analysis within a
species or among different related species. In the last few years, an important
amount of resequencing data of crop varieties and landraces has being accumulated.
As an example, 3000 rice varieties have already been sequenced and offer an
unprecedented opportunity to search for the genetic bases of a wide range of
phenotypic differences (Li et al. 2014). However, in most cases, the analyses of
variability are restricted to SNPs, and TE insertion polymorphisms are not analysed.
The reason for that is that detecting TE polymorphisms, and in particular TE
insertions with respect to the reference genome is far from trivial. There are a
number of recent tools that allow detecting TE insertion polymorphisms using
paired-end resequencing data, including TEA (Lee et al. 2012), RetroSeq (Keane
et al. 2013), VariationHunter (Hormozdiari et al. 2010), TEMP (Zhuang et al. 2014)
and Jitterbug (Hénaff et al. submitted), but they are only starting to be used to
determine the role of TEs in plant genome evolution (see for example Sanseverino
et al., submitted). The use of these tools on the growing amount of resequencing
data on plant varieties and accessions will probably allow us in the next future to
have a more global and complete view of the impact of TEs in plant genome
evolution. In particular, the analysis of crop genomes and the comparison of crop
reference genomes with that of, on the one hand, their wild ancestors, and on the
other hand, domesticated landraces or elite varieties will shed light on the role of
TEs on the evolution of plant genomes during domestication and breeding. In
addition, as crop domestication is an excellent model to study genome evolution at
large, as it has already been said (Olsen and Wendel 2013), these analyses will
probably allow us to better understand the structure and evolution of plant genomes
and the key role played by TEs, who once were called junk DNA and now are
rediscovered as key factors for genetic innovation.
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